If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x+x^2=68
We move all terms to the left:
13x+x^2-(68)=0
a = 1; b = 13; c = -68;
Δ = b2-4ac
Δ = 132-4·1·(-68)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-21}{2*1}=\frac{-34}{2} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+21}{2*1}=\frac{8}{2} =4 $
| 13÷2.6=b | | 9-x=2x+5+3x-8 | | 12x+0=18x+2 | | 18t+-19t+8t=-14 | | k/3+5=1 | | 10x+155=-15x+230 | | 12x=18x+2 | | 3 | | 3x-0.6=9 | | -9+10x=31 | | 38=3x17 | | −18−1,3x=34,8+3,5x | | 1^x=2.03 | | 81=9(w+1) | | 1.8x-3.7=-4.2x+.3 | | -91=-9n+8 | | 10x+155=15+230 | | 3(x+4)-6(x-3)=3(x+5) | | -8x+7(10)=6 | | 6z^2+6z=336 | | 9y-4y-6y=-72-64 | | 5x+26+11x-26=180 | | 9y-4y-6y=-72-66 | | 77=7(b+5) | | 11x-26+5x+26=180 | | 4(y+1)+3y-1=6y+3 | | 14-2b=4 | | 1.2x+4.6=0.8x+54.6 | | 4/m=6/18 | | 7x^+48x-7=0 | | -4+8x=36 | | 6x-9-9(x-1)=2(x+3) |